Novel Positive Regulatory Role for the SPL6 Transcription Factor in the N TIR-NB-LRR Receptor-Mediated Plant Innate Immunity
نویسندگان
چکیده
Following the recognition of pathogen-encoded effectors, plant TIR-NB-LRR immune receptors induce defense signaling by a largely unknown mechanism. We identify a novel and conserved role for the SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-domain transcription factor SPL6 in enabling the activation of the defense transcriptome following its association with a nuclear-localized immune receptor. During an active immune response, the Nicotiana TIR-NB-LRR N immune receptor associates with NbSPL6 within distinct nuclear compartments. NbSPL6 is essential for the N-mediated resistance to Tobacco mosaic virus. Similarly, the presumed Arabidopsis ortholog AtSPL6 is required for the resistance mediated by the TIR-NB-LRR RPS4 against Pseudomonas syringae carrying the avrRps4 effector. Transcriptome analysis indicates that AtSPL6 positively regulates a subset of defense genes. A pathogen-activated nuclear-localized TIR-NB-LRR like N can therefore regulate defense genes through SPL6 in a mechanism analogous to the induction of MHC genes by mammalian immune receptors like CIITA and NLRC5.
منابع مشابه
Emerging role of SGT1 as a regulator of NB-LRR-receptor nucleocytoplasmic partitioning
Plant nucleotide-binding (NB) and leucine-rich repeat (LRR) receptors mediate effector-triggered immunity. Two major classes of NB-LRR proteins are involved in this process, namely, toll-interleukin receptor (TIR)-NB-LRR and coiled coil (CC)-NB-LRR proteins. Recent reports show that some of the TIR-NB-LRRs and CC-NB-LRRs localize to the cytoplasm and nucleus. Equilibrium between these pools is ...
متن کاملNRG1, a CC-NB-LRR Protein, together with N, a TIR-NB-LRR Protein, Mediates Resistance against Tobacco Mosaic Virus
In animals and plants, innate immunity is regulated by nucleotide binding domain and leucine-rich repeat (NB-LRR) proteins that mediate pathogen recognition and that activate host-cell defense responses. Plant NB-LRR proteins, referred to as R proteins, have amino-terminal domains that contain a coiled coil (CC) or that share similarity with animal Toll and interleukin 1 receptors (TIR). To inv...
متن کاملNuclear Accumulation of the Arabidopsis Immune Receptor RPS4 Is Necessary for Triggering EDS1-Dependent Defense
Recognition of specific pathogen molecules inside the cell by nucleotide-binding domain and leucine-rich repeat (NB-LRR) receptors constitutes an important layer of innate immunity in plants. Receptor activation triggers host cellular reprogramming involving transcriptional potentiation of basal defenses and localized programmed cell death. The sites and modes of action of NB-LRR receptors are,...
متن کاملChloroplastic Protein NRIP1 Mediates Innate Immune Receptor Recognition of a Viral Effector
Plant innate immunity relies on the recognition of pathogen effector molecules by nucleotide-binding-leucine-rich repeat (NB-LRR) immune receptor families. Previously we have shown the N immune receptor, a member of TIR-NB-LRR family, indirectly recognizes the 50 kDa helicase (p50) domain of Tobacco mosaic virus (TMV) through its TIR domain. We have identified an N receptor-interacting protein,...
متن کاملBalanced Nuclear and Cytoplasmic Activities of EDS1 Are Required for a Complete Plant Innate Immune Response
An important layer of plant innate immunity to host-adapted pathogens is conferred by intracellular nucleotide-binding/oligomerization domain-leucine rich repeat (NB-LRR) receptors recognizing specific microbial effectors. Signaling from activated receptors of the TIR (Toll/Interleukin-1 Receptor)-NB-LRR class converges on the nucleo-cytoplasmic immune regulator EDS1 (Enhanced Disease Susceptib...
متن کامل